Fréchet Derivatives for Some Bilinear Inverse Problems

نویسندگان

  • Frank Natterer
  • Helmut Sielschott
  • Oliver Dorn
  • Thomas Dierkes
  • Victor Palamodov
چکیده

In many inverse problems a functional of u is given by measurements where u solves a partial differential equation of the type L(p)u + Su = q. Here, q is a known source term and L(p), S are operators with p as unknown parameter of the inverse problem. For the numerical reconstruction of p often the heuristically derived Fréchet derivative R′ of the mapping R : p → ’measurement functional of u’ is used. We show for three problems — a transport problem in optical tomography, an elliptic equation governing near infrared tomography, and the wave equation in moving media — that R′ is the derivative in the strict sense. Our method is applicable in more general problems than established methods for similar inverse problems. AMS subject classifications. 35R30, 35R25, 65M32, 65N21, 92C55, 92F05, 35L20, 35J25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Calculating Fréchet Derivatives and Sensitivities for the Non-linear Inverse Problem: a Comparative Study1

MCGILLIVRAY and OLDENBURG, D.W. 1990. Methods for calculating Fréchet derivatives and sensitivities for the non-linear inverse problem: a comparative study. Geophysical Prospecting A fundamental step in the solution of most non-linear inverse problems is to establish a relationship between changes in a proposed model and resulting changes in the forward modelled data. Once this relationship has...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

Higher Order Fréchet Derivatives of Matrix Functions and the Level-2 Condition Number

HIGHER ORDER FRÉCHET DERIVATIVES OF MATRIX FUNCTIONS AND THE LEVEL-2 CONDITION NUMBER∗ NICHOLAS J. HIGHAM† AND SAMUEL D. RELTON† Abstract. The Fréchet derivative Lf of a matrix function f : C n×n → Cn×n controls the sensitivity of the function to small perturbations in the matrix. While much is known about the properties of Lf and how to compute it, little attention has been given to higher ord...

متن کامل

Expanding the Applicability of a Third Order Newton-Type Method Free of Bilinear Operators

This paper is devoted to the semilocal convergence, using centered hypotheses, of a third order Newton-type method in a Banach space setting. The method is free of bilinear operators and then interesting for the solution of systems of equations. Without imposing any type of Fréchet differentiability on the operator, a variant using divided differences is also analyzed. A variant of the method u...

متن کامل

Applied Analysis I - ( Advanced PDE I ) ( Math 940 , Fall 2014

function, 51 Riemann integral, 51 adjoint bilinear form, 65 almost separably valued, 53 Ascoli Theorem, 8 Banach space reflexive, 6 separable, 2 Banach-Steinhaus Theorem, 5 Bessel’s inequality, 9 biharmonic, 61 bilinear form, 55, 58 bounded, 58 strongly positive, 58 Bochner-Pettis Theorem Theorem, 53 Bounded Inverse Theorem, 6 Calculus in W 1,p(I;X) Theorem, 54 Campanato ’63 Theorem, 86 Campana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2002